skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zheng, Ruxin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 22, 2026
  2. Free, publicly-accessible full text available April 6, 2026
  3. Free, publicly-accessible full text available April 6, 2026
  4. We present a deep reinforcement learning approach to design an automotive radar system with integrated sensing and communication. In the proposed system, sparse transmit arrays with quantized phase shifter are used to carry out transmit beamforming to enhance the performance of both radar sensing and communication. Through interaction with environment, the automotive radar learns a reward that reflects the difference between mainlobe peak and the peak sidelobe level in radar sensing mode or communication user feedback in communication mode, and intelligently adjust its beamforming vector. The Wolpertinger policy based action-critic network is introduced for beamforming vector learning, which solves the dimension curse due to huge beamforming action space. 
    more » « less
  5. The potentials of automotive radar for autonomous driving have not been fully exploited due to the difficulty of extracting targets' information from the radar signals and the lack of radar datasets. In this paper, a novel signal processing pipeline is proposed to address the max ambiguous velocity reduction issue introduced by staggered time division multiplexing (TDM) scheme of high resolution imaging radar system with a large number of transmit antennas. A dataset of 1,410 synchronized frames (stereo cameras, LiDAR, radar) with three classes, i.e., bus, car, and people, is constructed from field experiments. Next, we implement a vanilla SpectraNet and show its promising performance on moving object detection and classification with a mean average precision (mAP) of 81.9% at an intersection over union (IoU) of 0.5. 
    more » « less